Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 649-657, 2023 04.
Article in English | MEDLINE | ID: mdl-36441265

ABSTRACT

Cervical cancer is one of the leading causes of women's mortality in developing countries. The prevalence of cervical cancer is higher in developing countries like India and continents like Africa. Hyper-methylation of tumor suppressor genes through human papillomavirus (HPV) infection is known to be one of the major causes of cervical cancer. The promoter hypermethylation of the cell adhesion molecule 1 (CADM1) and suppressor of cytokine signalling (SOCS1) genes due to DNMT1 overexpression leads to their epigenetic silencing followed by gene repression causing cervical cancer. In silico study on the inhibition effect of capsaicin on DNMT1 was simulated by different servers. The binding energy was observed to be -7.8 kcal/mol. In vitro studies on the effect of capsaicin on aberrant methylation of CADM1 and SOCS1 were performed on the adenocarcinoma cervical cancer cell line, HeLa. The IC50 of capsaicin was observed to be 160 µM through crystal violet assay. DNA methylation of the CADM1 and SOCS1 was analyzed by methylation-specific PCR along with their reversal using capsaicin (20 µM) by treating the cells for 72 h and 6 days. In silico results suggested that capsaicin has an inhibitory effect on DNMT1, which regulates DNA methylation leading to the hypermethylation of CADM1 and SOCS1 genes. The in vitro studies suggested that hypermethylation leads to the inhibition of CADM1 and SOCS1 expression, which could be reversed using capsaicin with visible changes in methylation-specific and unmethylation-specific bands in MS-PCR, respectively. The present study shows the reversal of methylation of CADM1 and SOCS1 after 72 h which showed a further increase in case of 6 days of treatment using 20 µM capsaicin, which makes capsaicin a potent candidate for causing demethylation of CADM1 and SOCS1 genes that may lead to the reactivation of the downregulated gene.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Capsaicin/pharmacology , DNA Methylation , Suppressor of Cytokine Signaling Proteins/genetics , HeLa Cells , Demethylation , Cell Line, Tumor , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism
2.
Biology (Basel) ; 10(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535706

ABSTRACT

The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.

3.
Enzyme Microb Technol ; 127: 65-69, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31088619

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc-dependent proteases involved in the degradation of extracellular matrix proteins. As one of the isoforms, MMP-1 breaks down collagen, and its activity is known to be important in wound healing. Its timely and adequate level of expression is pivotal because MMP-1 is also involved in the damage or aging of skins as well as in certain types of cancers. Thus, both assaying the MMP-1 activity and developing its inhibitors are of great importance. We here developed an in-house assay system that gave us the high degree of freedom in screening peptide inhibitors of MMP-1. The assay system utilized a circularly permutated fusion of ß-lactamase and its inhibitory protein through an MMP-1-sensitive linker so that the activity of MMP-1 could be translated into that of ß-lactamase. As a proof of concept, we applied the developed assay system to initial screens of MMP-1 inhibitors and successfully identified one lead peptide that inhibited the collagenase activity of the enzyme.


Subject(s)
Drug Evaluation, Preclinical/methods , Matrix Metalloproteinase 1/analysis , Matrix Metalloproteinase Inhibitors/isolation & purification , Matrix Metalloproteinase Inhibitors/pharmacology , Peptides/isolation & purification , Peptides/pharmacology
4.
Enzyme Microb Technol ; 119: 45-51, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30243386

ABSTRACT

Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from recinoleic acid was achieved by whole-cell biotransformation by Escherichia coli, utilizing crude glycerol as the sole carbon source. Whole-cell biotransformation resulted in ∼93% conversion of the substrate ricinoleic acid to (Z)-11-(heptanoyloxy)undec-9-enoic acid. We replaced the inducer-dependent promoter system (T7 and Rhm promotors) with a constitutive promoter system. This resulted in successful expression of ADH, FadL, and E6-BVMO, without costly inducer addition. Efficacy evaluation of the whole-cell biotransformation by inducer-free system by five different E. coli strains revealed that the highest product titer was accumulated in E. coli BW25113 strain. The engineered inducer-free system using crude glycerol as the sole carbon source showed competitive performance with induction systems. Optimized conditions resulted in the accumulation of 7.38 ± 0.42 mM (Z)-11-(heptanoyloxy)undec-9-enoic acid, and when 10 mM substrate was used as feed concentration, the product titer reached 2.35 g/L. The inducer-free construct with constitutive promoter system that this study established, which utilizes the waste by-product crude glycerol, will pave the way for the economic synthesis of many industrially important chemicals, like (Z)-11-(heptanoyloxy)undec-9-enoic acid.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Carbon/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Glycerol/chemistry , Ricinoleic Acids/metabolism , Undecylenic Acids/metabolism , Biotransformation , Escherichia coli/growth & development , Genetic Engineering
5.
Gene ; 664: 37-43, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29684487

ABSTRACT

Begomoviruses belong to the family Geminiviridae are associated with several disease symptoms, such as mosaic and leaf curling in Jatropha curcas. The molecular characterization of these viral strains will help in developing management strategies to control the disease. In this study, J. curcas that was infected with begomovirus and showed acute leaf curling symptoms were identified. DNA-A segment from pathogenic viral strain was isolated and sequenced. The sequenced genome was assembled and characterized in detail. The full-length DNA-A sequence was covered by primer walking. The genome sequence showed the general organization of DNA-A from begomovirus by the distribution of ORFs in both viral and anti-viral strands. The genome size ranged from 2844 bp-2852 bp. Three strains with minor nucleotide variations were identified, and a phylogenetic analysis was performed by comparing the DNA-A segments from other reported begomovirus isolates. The maximum sequence similarity was observed with Euphorbia yellow mosaic virus (FN435995). In the phylogenetic tree, no clustering was observed with previously reported begomovirus strains isolated from J. curcas host. The strains isolated in this study belong to new begomoviral strain that elicits symptoms of leaf curling in J. curcas. The results indicate that the probable origin of the strains is from Jatropha mosaic virus infecting J. gassypifolia. The strains isolated in this study are referred as Jatropha curcas leaf curl India virus (JCLCIV) based on the major symptoms exhibited by host J. curcas.


Subject(s)
Begomovirus/genetics , DNA, Viral/isolation & purification , Genome, Viral , Jatropha/virology , Plant Diseases/virology , Begomovirus/pathogenicity , Biological Evolution , Euphorbia/virology , Gene Transfer, Horizontal/genetics , Mosaic Viruses/genetics , Phylogeny , Plant Leaves/virology , Viral Proteins/genetics
6.
J Biosci Bioeng ; 126(4): 431-435, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29691194

ABSTRACT

Horseradish peroxidase (HRP) is widely used as a marker enzyme in immunoassays and biosensors, and can possibly be used in industries such as waste water treatments or fine chemical synthesis. Cost-effective production of active HRP is thus very important in the related fields. Also, engineering of HRP for its better performance in the designated application is expected to make the enzyme even more important in several areas of research and industry. One of obstacles to this end and to the large scale production of the enzyme has been its facile expression in a bacterial host. Here we show that HRP could be overexpressed as a soluble form by fusing the enzyme with Escherichia coli phosphoglycerate kinase (PGK). After simple incubation with calcium ion, hemin, and oxidized glutathione, PGK-HRP could be fully activated showing a higher molar specific activity than plant-derived HRP. Our established procedure did not use tedious and inefficient refolding steps that have been used to activate HRP produced as inclusion bodies and thus is superior in its overall yield (>72 mg purified HRP conjugate per L culture) to existing methods. By co-expressing PGK-HRP with ferrochelatase in a special host that permitted the formation of disulfide bonds in the cytoplasm, the activation steps could be simplified even though the resulting specific activity was low.


Subject(s)
Escherichia coli/genetics , Gene Expression , Horseradish Peroxidase/metabolism , Escherichia coli/metabolism , Hemin/metabolism , Horseradish Peroxidase/genetics , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
7.
Anal Biochem ; 532: 38-44, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28600127

ABSTRACT

A myc-tag and of which recognition by an antibody 9E10 has long been used for the detection and purification of recombinant proteins. We have previously expanded the application of the tag to the specific detection and purification of backbone-cyclized proteins. Here we sought a more practical way to using the 9E10 antibody by expressing its single chain antibody (scAb) form in Escherichia coli. The combined use of a strong T7 promoter and auto-induction strategy rather than early to mid-log induction of a Lac promoter resulted in the soluble over-expression of 9E10 scAb. However, the co-expression of a chaperone, Skp, was absolutely necessary for the activity even when the protein was expressed in a soluble manner. We could purify about 4 mg of 9E10 scAb from 1 l of culture, and the resulting scAb could be used to detect and purify the backbone-cyclized protein as the parental full-length 9E10. Moreover, the immunoaffinity resin prepared using 9E10 scAb could be regenerated several times after the elution of bound proteins using an acid, which added more value to the ready preparation of the active antibody in bacteria.


Subject(s)
Escherichia coli/metabolism , Green Fluorescent Proteins/analysis , Protein Engineering/methods , Proto-Oncogene Proteins c-myc/immunology , Recombinant Fusion Proteins/analysis , Single-Chain Antibodies/analysis , Cyclization , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Molecular Chaperones/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
8.
Org Biomol Chem ; 1(10): 1737-40, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12926363

ABSTRACT

Facile reductive coupling of benzylic halides is reported with ferrous oxalate dihydrate in DMF or HMPA under nitrogen atmosphere at 155-160 degrees C. The coupling is proposed to proceed by two successive oxidative additions of benzylic halides to ferrous oxalate to give an intermediate organoiron complex which undergoes concerted dimerization to give the corresponding reductively coupled dimers in high yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...